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a e notable exceptions the best sozting networks known have employed a "divide-
sort-merge" strategy. That is, the N inputs are divided into 2 groups -- normally of
size [rio and [*N] * -- that are sorted independently and then "merged" together to
form a single ordered sequence. An N-sorter netvork that uses this strategy zonsists
of 2 smaller sorting networks followed by a merge network. The best merge networks
known are also constructed recursively, using 2 smaller merge networks followEd by a
simple arrangement of UFlf1 - 1 comparr-t.t)rs. W,- consider a generalization of
t'ie divide-:-,,rt-merge strategy in which the h' inputs are divided into g;-2 groups -

(,f size N., N~ ...,N where N +N +...+N = RT-- that are sorted independently and
then mergkd tggethe'rý The mergý n~twork ýhat ccynbines these g sort-?d groups contain
d >2 smaller merge net-works, where d is a conmmun divisor of N )N, ...N I. The two
parameters g and d together define what we call a "[g,dl" st-rate6y. A (g&d]
N-sorter network contains g smaller sorting networks followed by a (g,d] merge net-
work. The initial portion of the [g,dJ merge network consists of d smaller merge
networks; the final portion, which we call the "f-network," includes whatever addi--
tional comparators are required to complete the merge. When g = d = 2 the f-network
is a simple arrangement of [gN -Icmaaor;hwvr for larger g, d the structure
of the [g,d] f-network becomes increasingly complicated. In this paper we describe

N-isorter networks are more economical than any previous networks that use the divide-
sort-merge strategy; for N >34 the resulting networks are more monomical than previous
networks that use the divide-sort-merge strategy; for N >34 the resulting networks
are more economical than previous networks of any construction. The (g,d] N-sorter
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A GENEYUALIZATION OF THE DIVIDE-SORT-MERGE

ST•ATEJI FOUR SORTING NETWORKS

by

David C. Van Voorhis

ABSTRACT

With a few notable exceptions the best sorting nietworks known ha-,v

employed a "divide-sort-merge' strategy. That Is, the N i4puts are

divided into 2 groups - - normally of size rtN1 and L*J N - -

that are sorted independently and then "merged" together to form a si:gle

sorted sequence. An N-sorter network that use, this strategy consists

of 2 smaller sorting networks followed by a merge network. The best

merge networks known are also constructed recursively, using 2 smaller

merge networks followed by a simple arrangement of L*l- 1 comparators.

We consider a generalization of the divide-sort-merge strategy in
7.

which the N inputs -;re divided into g 6_2 disjoint groups that are

sorted independently and then merged together.( The merge network that

combines these g sorted groups uses d > 2 smaller merge networks as

an initial subnetwork. The two parameters g and d together define

what we call a " [g,d] " strategy.

*Here [x1 denotes the smallest integer greater than or equal to x,

whereas LxJ denotes the largest integer less than or equal to x.

-I -'" ' • • '
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A [g,d] N-sorter network consists of g smaller sorting networks

followed by a [g,d] merge network. The initial portion of the [gd]

merge network cor-ists of d smaller merge networks; the final portion,

which we call the "f-networkI includes whatever additional comparators

are required to complete the merge. When g = d = 2, the f-network is

a simple arrangement of FiN] - 1 comparators; however, for larger

g,d the structure of the [gd] f-network becomes increasingly complicated.

In this paper we describe how to construct [g,d] f-networks for

arbitrary gd. For N > 8 the result.ng [gd] N-sorter networks are

more economical than any previous networks that use the divide-sort-

merge strategy; for N > 34 the resulting networks are more economical

than previous networks of any construction. The [4,4] N-sorter network
1 N~o•2 _

described in this paper requires V N(log2N) - . N(log2 N) + O(N)

comparators, which represents an asymptotic improvement of 1 N(log N)

comparators over the best previous N-sorter. We indicate that special

constructions (not described in this paper) have beei found for [ 2 r, 2 r]

f-networks, which lead to an N-sox-ter uetwork that reqtires only

.25 N(log 2 N) 2  - .372 N(log2 N) + O(N) comparators.

!( , : ' J
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I. Introduction

A comparator network with 4 inputs Is illustrated in Fig. l(a).

Each of the 5 comparators, iabeled A, B, C, D, and E, compares its

two inputs and emits the smAller on its higher output lead and the larger

on its lower output lead. An abbreviated diagram for this comparator net-

work is given in Fig. l(b). where each comparator is replaced by a vertical

line connecting the two comparands.

A comparator network with N input and output leads is called an

N-sorter network, or simply an N-sorter, if for any multiset of inputs

I = [il,i 2 ,...,iN" , the resulting outputs 0 = [OlO•,...,ONI satisfy:

1) 0 is a permutation of I; and 2) o J ok if j < k. The net-

work depicted in Fig. 1 is h 4-sorter, since comparators A through D

move the smallest input to o1 and the largest input to o , and then

E orders the remaining two inputs.

From an engineering viewpoint it may be desirable ta use as few

comparators as possible when constructing a network to sort N inputs.

(An alternative design objective would be to minimize the delay required

to sort N items.) Let S(N) represent the minimum number of compara-

tors required by an N-sorter network. R. W. Floyd and D. E. Knuth E 2

have determined S(N) for N < 8 by proving a lower bound for S(N)

that is precisely equal to che number of comparators actially contained

in the most economical N-sorter notwork known. However, for N > 8 the

value of B(N) and even the asymptotic behavior of the function remaia,

an open question. The strongest lower bound known for S'N), proved by

A multiset is like a set except that it may contain repetitions of

elements. See D. I. Knuth r I ).

41
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D. Van Voorhis £ 3 ), increases as N(log2N), whereas the strongest upper

bound known - - i.e. the number of comparators actually required by the

most economical N-sorter known, designed by K. E. Batcher E 4 ) and im-

proved by M. W. Green E 5 ) - - increases as N(logN) 2 .

Batcher's N-sorter network contains B(N) comparators, where

B(N) = jNtlog2 N) 2 
- iN(lOg 2 N) + N + 0(1). (1)

Although Green has been able to improve upon Batcher's networks, the net

effect of Green's modification is simply to reduce the coefficient in the

linear term of Equation (1) from unity to I. In this paper we preseut

an extension of Batcher's constructions which reduces the coefficient of
1 1

N(log2 N) in (1) from - to - Our construction achieves an im-

provement of - -L N(log2 N) over the best previou3 networks, although
12 2

the asymptotic growth is still tN(log 2 N) 2. We indicate that a modifi-

cation of our construction, which is too complicated to include here,

reduces the coefficient of N(log 2 N) in (1) to -. 372.

[_________________________4



II. The Divide-sort-merge Strategy

It is not always easy to determine whether a given comparator net-

work is aa h-sorter. For example, it can be shown that the comparator

network in Fig. 2(b) is a 4-sorter whereas that in Fig. 2(a) is not. Mne

way to check a notwork is ro see whether it will sort all N! permutations

of the numbers l,2,...,N as inputs. However, the followlig important

theorem reduces to 2N the number of input patterne required to test

the design of an N-sorter network.

Theorem: (Zero-One Fzinciple)

A comparator network with N, inputs and N outputs is an N-sorter

if and only. if it will sort all 2 combinations of N inputs for which

each input is either 0 or 1. (See ( 2 , ]

Proof:

The "only if" portion of the theorem is obvious; to prove the re-

mainder of the theorem we show that if a comparator network C is not

an N-Laorter network, then there is at least one combination of 0's and

l's as inputs that C fails to sort.

Suppose that C is not an N-sorter network, so that for some mul-

tiset of inputs 7 = (ilsi 2 $J...iN] it yields the incompletely ordered

outputs 0(I) = [o1,o2 ... ,oN,. This means that, although 0(I) is a

permutation of I o0 > o0 for some indices satisfying 1 < J < k < N.

Now it is easily verified (by induction) that if I(x) is any non-

decreasing function (i.e. if x < y Implies that f(x) < f(y), ) then

*This proof was suggested to the author by D. N. Knuth.

• *' vi
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Fig. 2. Which of these is a 4-sorter network?

0. 0 0 0o
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(a) (b)

rig. 3. Testing Comparator Networks.

ii.
• m-sorter

• network (m,n).

im xMmerge

i•I n-sorter | , network .

network y

S _n-- _r----n _n

Fig. 4. (m*n)-sorter network T.
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since -ai[f(x),f(y)] = f(-ax=x,y]),

Off(i ),f(i,)1 -- f(ol),f(o2),...,f(oN)J. (2)

Therefore, using

O, x < 0Ok;

f(x) (3)1, x > Ok,

we obtain the inputs I = (f(il),f(i 2 ),...,f(iN)], which is a combi-

nation of 0's and l's that C fails to sort, since f(o 3 ) = 1 >

f(oj) = 0.

Q.E.D.

The theorem is illustrated in Fig. 3. The inputs I = 11,0,1,0}

are applied to the 4 input leads of each network in Fig. 2. The first

network fails to arrange the inputs into non-decreasing order; therefore,

it is not a 4-sorter network. The second network is a 4-sorter since it

will order properly these inputs and also the other 15 combinations of

O's and l's as Inputs.

N
Although 2 grows much more slowly than N:, it is not feasible to

test large networks for 2N different combinations of inputs. Therefore,

if we desire large sorting networks, we must build them in such a way

that we can prove "by construction" that they will arrange all combina-

tions of inputs into non-decreasing order. The Zero-One Principle is

helpful in developirg such proofs.
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The most successful strategy for designing large sorting networks,

suggested by R. C. Bose and R. J. Nelson C 6 ], has been to build them

out of smaller sorting networks. The inputs are divided into two groups

that are sorted separately and then combined, or merged, to form a sin-

gle sorted multiset. This divide-sort-merge strategy is illustrated in

Fig. 4 by the N-sorter netwcrk T, which consists of:

i) an m-sorter network that operates on the inputs

fil i 2 ,...,i- ) to produce the sorted multiset X

[Xlx2,...,7m3; and

ii) an n-sorter network, where n = N - m, that trans-

forms the inputs ri m+l i m+2" ... iN] into the sorted

multiset Y = [yly21...' )n1 ; followed by

iii) an (mn) merge network that combines X and Y into

the single sorted multiset 0 = 1OlO2-...)O.

We can use the divide-sort merge strategy recursively to achieve

N-sorter networks for arbitrary N, provided we can construct the

necessary merge networks. Bose and Nelson suggested building an (m,n)

merge networY out of three smaller merge networks arranged in a pattern

resembling the final ..nree comparators of the 4-sorter in Fig. 1. For

exaiple, when m and n are both even and m < n. Bose and Nelson's

(mn) merge network consists of the following. (See Fig. •.)

EIl; a (nmj) merge network that determines the smallest

fm members of 0, namely OO 2,P... o0j; and

BN2: a (imr,.a) merge network that determines the largest

1 m members of 0; followed by

- - - -----

..................................J~
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X, 01

Fi.5 oe n esns mn eg network .

3n 3

Y1  meg.f

network

Fig. 6. BoeatchFers's (ni n) merge network.

3 . 3



9

143: a (Rn,jn) merge network that determines the remaining

n members of 0.

K. E. Batcher [ 4 J proposed a different merging strategy which is

more economical than Bose and Nelson's, and which has not been improved

upon. The general (Mn) merge network is defined recursively, beginning

with the (1,1) merge network, which is a single comparator. When m

and n are both even integers greater than one, Batcher's (Mn) merge

network consists of the following. (See Fig. 6.)

Bl: a (4n,jn) merge network that combines the odd members

X-= xx 3 ,... and Y 0 (y 1 ",y Y...yn-1  to

form the odd members of an intermediate multiset V,

namely V0 = [vl,v 3 ,...,vm+nl]; and

B2: a (im,in) merge network that merges the even members

Xe and Ye to form Ve = (v 2 ,v 4 ,...,vmn; followed by

B3: the j(m+n)-i comparators v 2k+2 :v 2 k+3, 0 < k < j(m+n)-l.

Since Batcher's (Mn) merge network is the simplest example of a more

general strategy described in the next two sections, it is instructive to

work through the proof that the network described above and depicted in

Fig. 6 leaves the outputs 0 = [o,o,...omn sorted.
1`2' mi-n

Suppose that the network T depicted in Fig. 4 consists of any

m-sorter network, any n-sorter network, and Batcher's (mon) merge net-

work. Clearly the (m,n) merge network orders 0 iff t is an (m+n)-

sorter network. Therefore, the Zero-One Principle guarantees that the

(mn) merge network orders 0 iff T sorts i1 combinations of m+n

0's and l's as inputs.

4i 7'T
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For any combination of 0's and l's as inputs to T, the m-

sorter sorta X while the n-sorter sorts Y. The sorted multiset X

consists of r O's followed by m-r l's, and Y contains s 0's

followed by n-s l's. where for different combinations of inputs to

T, r and s assume all combinations of the values 0 < r < r;

0 < s < n. Let n represent the number of O's that go into Vo
0 0

that is, the number of O's in X plus the number in Y . Let n
0 e

represent the number of O's that go into V . Then
e

n < n < n + 2, (4)
e- o- e

since each of the two sorted multisets X and Y contributes either the

same number of O's to V and V or else one more 0 to V .
O e O

After the odd and even members of X and Y have been merged to

form V and Ve. the following situation exists:
0i

1) V0  and V are each ordered.

2) The first 2ne elements of V are, therefore, all 0.

3) The remaining m + n- 2ne elements are:

a) all 1 If r =n; or

b) 0 followed by l's if n = ne + 1; or

c) 010 followed by l's if rn = n +2.

The elements of V are sorted except in Case c) which requires an

additional comparator for the adjacent pair Vn : v For2ne+2 1 2, +3,e 0
different combinations of inputs to T. n and n will assume all of0 0

the values 0,l,...,I(m+n). Case c) can occur for each of the possuble

values of n such that no = ne + 2 < I(m+n). Therefore, the comparators

0 6Se•: • d; •
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listed in B3 above are both necessary and sufficient to complete the

merge.

B•tcher's merge strategy is illustrated by the 8-sorter network in

Fig. 7. The 10 comparators in Part A comprise two 4-sorters that order

X and Y. (Note that each 4-sorter consists of two 2-sorters, i.e.

comparators, followed by a (2,2) merge network.) The three comparators

in Part B merge X = [xl,x 3 ] and Yo= -y,-y Y ] to form V0 =[vlv

Vs,v.•I, while the three comparators in Part C compriso a (2,2) merge

network for X and Y . The comparators in Part D are those callede e

for in B3, which combine V and V to form 0.
Cl e
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11- V 01

I2X2 -V2 02

- , Ia-i3

j 5 lI - S &- 1. 005

1v7 Y3 -J 7 7

Par'tA Part B Part C Par'tD

Fig. 7. Batcher's B-sorter network.
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III. The [3,3] Merge Strategy

An obvious extension of the divide-sort-merge strategy as described

above is to partition the N inputs into g > 2 groups that are sorted

separately and then merged together. An N-sorter network that uses this

g-way divide-sort-merge strategy consists of g sorting networks of size

N where .g N = N, followed by an (N,N 2 , ... N ) merge

network. As an extension of Batcner's merge strategy, we can design

g-wary merge networks that begin with d --. 2 smaller g-way merge networks,

mJ

where d is a common divisor of N1 ,N 2 , .. ),N. 91

The two parameters g and d together definte what we shall call

the [g,d] merge strategy. We say, then, that Batcher's networks described

in the last section use the [2,2] strategy.

A [g,d] (NlyN 2 ,...,N ) merge network consists of d ýN1/d,...,N /d

merge networks followed by whatever additional comparators are required

to complete the merge. We shall call the network comprising these final

additional comparators the [gd] f-network. The [2,2) f-network, namely

the comparators listed in part B3 of Batcher's merge network, is par-

ticularly simple. In the remainder of thic section we illustrate a

pr'ocedure for designing [g,d] f-networks for arbitrary g,d, by con-

sidering the case g = d = 3.

Suppose that we wish to design an tI,n,p) merge network that will

combine the three sorted multisets X -XlX 2 ,...,Xm], Y a y .. nl.

and Z = {ZlZ 2 ,.,.9)Zp into the single sorted multiset 0 = {Ol'02, ..'

o m+n+p. If m, n, and p are all multiples of 3, then the [ .31 merge

network consists of the following. kSet Fig. 8.)

5
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M31: an (nV3,n/3,p/3) merge network that combines x=
a

[Xlx ) ..)X-20 - [l~4'__v,2) and Z a

(o z to form va v~~, ~~~-

M32: an (mV3,rV3,P/3) merge network that combines X
_b

(X 2P xS,...Oxm M-1,Y = (y 21Y 5,Y1..P,y 1J, a~nd Z b

(z2,z5,,...,Yzp~1  to form vb = V 2` v5,**.,gV 3 4 .1 4 ..1,)

m33: an (mV3sn/3,P/3) merge network that combines X=
c

[x3, 6 .. x, Y and Z =( 3

z6,.. Pz ]to form vc = IV 3,1V 6,.. ,Vm+n..p]; followed by

M3~4: the D:3l3 f-network that we have yet to define.

Now the Zero-One Principle guarantees that, without loss of gener-

ality, we may assume that all members of X, Yj, and Z are either 0

or 1. (To see 'chat this is so., consider an (m+n+p)-sorter network that

consists of: an a-sorter that produces the sorted multiset X; an

n-qorter that produces Y; and a p-sorter that produces Z; followed

by aii (m,n,p) merge network.) When all members of X, Y, and Z are

either 0 or 1, we f ind that the number of O's in V a, Vb, and

V satisfies
c

n < nbýu < nc + 3. (5)

Therefore, after the three "-way merges described by U31 through M33,,

the following situation exists:

1) v &, Yb, and Vcare each ordered.

2) The first 3n% elements of V are all 0.

I ýWt--W -?
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3) If na = nb = nc, then the remaining elements of V are

all 1; otherwise, the remaining elements exhibit one of

the following patterns followed by l's.

a) 0 if na =D b + 1 =nc + 1;

b) 00 if n =n = n + 1;a b c

C) 0110 if n = nb + 2 -n + 2;
a bC

d) 0010 if n = nb + = n + 2;a c

e) 00100 if na = nb = nc + 2;

f) 0110110 if na = n c+3

g) 0010110 if na = nb + 2 = n + 3;

h) 0010010 if n = nb + 1 = n + 3;

i) 00100100 if n = nb = n + 3.

It is readily verified that patterns c) through i) are all sorted

by the following sequence of comparators.

V3 nc+3 :v3nc+7 0 < nc < t -2;

V3nc+2 :V3nc+4 0 < n < t -1;
(6)

V 3n +3:*"3n +5.1 0_< n c -< t 1 ;

v :v 0 < n < t- 1,

where t = (m+n+p)/3. These comparators constitute the (3,3) f-network.

The [3,3) strategy is illustrated by the 12-sorter in Fig. 9. The

inputs are initially partitioned into the three multisets [i1,i2,-i,31)

i5,i 6], [i 7 , i 8,i 9 ], and [i 10, 11Pi12] that are sorted separately.

4# i " '•
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V2 x2 v2  02

i3 -4 .x3 v3 I 03

4 x V4 1112
-5 , -5 v5 0 5

i6 x6 -v6 06

08
i7 '• Y, v7 .7

•8 Y2 v8 °80

VEE Y3 v9 09

it zI-l

Itl z2 VlIt1

i12 3 v12 , 12

[3,31 f-netw,,"k

Fig. 9. [3,3] 12-sorter network.

IX
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The networks required to sort these three multisets are each abbreviated

by double vertical lines connecting the appropriate comparand•. The

(6,3,3) merge network begins with three (2,1,1) merge network• that for•

Va2 Vb• and Vc. These merge networks• which are abbreviated by a

single vertical line• are simply 4-sorters without the initial compara-

tor connecting the pair from X. The remaining 11 comparators constitute

the [3• f-network defined by (6).
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IV. [g,d] Sorting Networks

For every pair of integers g,d > 2 we can corntruct N-sorter

networks using g small sorting networks followed by a [g,d] merge

network which, by definition, begins with I small merge networks. A

sorting network that begins with g sorting networks and d merge net-

works will be called a [gd] sorting network, even if the g sorting

networks and d merge networks do not employ the [g,d] strategy in-

ternally. For example, the 12-sorter in Fig. 9 is called a [3,3]

sorting network regardless of the construction of the initial 6-sorter

and the small merge networks.

In order to facilitate the general discussion of [g,d] sorting net-

works, we adopt the following conventions.

1) The purpose of an N-sorter network is to accept as input the

unordered multiset I = (il, i 2 ,...,iNY and to produce as

output the sorted multiset 0 =01Ol2O ... oN~ y where 0 is

a permutation of I and o < o<2_ ... < ON' The Zero-Ore

Principle allows us to assume, without loss of generality,

that all members of I are either 0 o0: 1. We make this

assumption throughout the remainder of this paper.

2) The g initial sorting networks, labeled Sl'S2'...'Sg' each

operate on an integral multiple of d members of I. The out-

puts of these g sorting networks together form a partially

ordered multiset X -- xIx2,...,XN], where x is the smallest

output from sl, x2  is the second smallest output from Sl,

and xN is the largest output from
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3) The j th merge network, 1 < j < d, operates on x(i-l)d+jJ

1 < i < N/d to produce v(i-l)d+j' 1 < i < N/d.

4) The [gd] f-network operates on V to produce 0.

The transformation from the unordered multiset I to the completely

ordered multiset 0 may be summarized by

Ssorting X d V f-network O.networks networks

The [g,d] f-network is defined informally to be any network that will

complete the ordering of the intermediate multiset V achieved in the

[g,d] N-sorter network, N = td. Before giving a formal definition, let

us examine the partial ordering in V. It is convenient to consider V

to be a t X d array, where

V(ipj) = v(i-l)d+j. (7)

The t rows and d columns of V are given by

Vi* J d IV(i <)}, I < t; (S)v ~<. j < d (- -

v(.,J) = : < i < t v(i,j)

Note that the column V(*,j), 1 < J < d, is completely ordered since
th

its t members are the t outputs of mi, the J merge network.

If the kth initial sorting network sk accepts nk 0' as

inputs, then the uniform distribution of the elements of X among the

Al



21

d merge networks guarantees that L(nk+d-J)/dj of these nk O's are

passed to merge network miJo Therefore, the total number of O's that

goes into mi, and into V( ij)' is given by

n - E L(nk+d-J)/dJ, 1 < j < d. (10)

(n.J, 1 < k < g

We may use Equation (10) to show that

n.(*I d) .(*,d_l) n. n(.,) - (.,d) + g. ('1)

Equations (4) and (5) are special cases of (n1).

We have seen that the d columns V(.j) are each ordered. The

following theorem specifies the remaining partial ordering in V.

Theorem 1:

Consider the Boolean multiset V = (vlJv 2,...,vN], where N = td.

Suppose that the d columns V(*,j), given by (9), are each ordered.

Then

a) the t rows V(i,*). given by (8), are also each ordered

if and only if the number of O's in V(.,j) sacisfies

n(.*.,d) n(*,d_l) (12)

and

b) the relation n(.,1) _< n(*,d) + g implies that

V (i,d) •V(i+g,1)1 1 < _< t-g. ()
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Proof:
a) The theorem is illustrated in Fig. 10. Since each column V(*,j)

is ordered, the upper n(,,j) elements of V(*J) - - that is,

<1 -< - - are all 0 and the remaining

t - n( %j elements are 1. If we draw a line from left to
right in V representing the step function h(J) = t - U(j)

then all elements of V above h are 0, whereas all elements

below h are 1. Now the rows V(i,*) are all ordered iff

no 1 appears to the left of a 0 in any row. Clearly this is

the case iff the line h(j) separating O's from l's is

non-decreasing, that is, iff

t-n *, ) -< t-n,(.,2) _ ' ' _< t-n (*. d) . 14

(See Fig. 10(b).) Equation (14) is equivalent to Equation (12).

b) Since V is Boolean

V(t+g,) = I > V(.,d) _ V(I+g,l)* (1)

Also, since V(*J) is ordered,

V(I j 0 < --> nU , ) > .( 6

Therefore, if n(,1]) • n(*,d) + c1  then

JJz'-A'
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Vjg) 0 => n(,) ig

=~> n(*d;

=> V (,ijd :5 V(i+g.l) (7

Together (1)and (17) imply that V <

Q. E. D.

Sic h oun (*,j) are ordered, and since n(*,j) satisfies
(11)o Theorem 1 and the transitivity of the relation "less than or equal

to" imply the following corollary.

Corollary 1:

Let V [v vl~v2, ...,vN] N N td, be the intermediate multiset

achieved by the Eg,d) N-sorter network T. Then for %ny multiset of

inputs to T, V (ij) .5 V(r.,5) if

a) r> i and a >J; OR

b) r>i+g.

The partial ordering In V is Illustrated in Fig. 11, for the cast

g 3y d 4, t 6. with an arrow from V to oz epresenting 
-(1o,1) to~ u

the relation V(£J 1 ~~) . W. Floyd has pointed out that the

partial ordering in V is exactly char'acterized by Corollar 1 and 1ig. 11.

*Private ciumunication.

-777t
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A A A A ',A ] n ola utstta
By this we mean that it V = 2P1...'** N) is any Boolea. multiset that

satisfies the partial ordering specified for V by Corollary 1, then
A

there is at least one combination of inputs to T that achieves V = V.

The bublety of this observation is best illustrated by a partial ordering

that is not exactly characterized. Considgr the comparator network that

results ±rom removing comparators D and E from the 4-sorter in Fig. 1.

The partial ordering in the multiset 0 does not include either o2 < o3

or 02 :f o V since 0((0,1,0,1i) = (0,1,0,,l and 0((1,1,0,01) = (0,1,1,0].

However, no combination of inputs will achieve 0 = (Ol,,0,0].

We have defined a [gd] f-network informally as a network that will

coniplete the ordering of the intermediate multiset V achieved in the

[gd] N-sorter network, N = td. The following is a more formal

definition.

Definition 1:

A sequence of comparators is called a [gd] f-network for N = td

items if and only if it will complete the ordering of the multiset

V = (vlv 2 ,...,vN], when a) the columns V of V, given by (9), are

each ordered and b) n(*,)j) satisfies (11).

We can construct [g,d] f-networks for arbitrary g,d by i) using

(11) to determine what unsorted patterne of O's and l's remain in V;

and ii) finding a sequence of comparators that will order these

unsorted patterns. Following this procedure we have derived f-networks

for g,d < 4; the best f-networks obtained are tabulated in Table 1.

S.)

*1 )
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2-7

Strategy f-network for N-sorterN=t A
I N =tdf [gd] (N)

[2p2] v i2Vi1,) <I<*-I

v (y2):V(i~.,l,, 1 <1 < t-l;

[2.-3J V(i3):V(i1 lp2),' 1 < -;N - 3

v (j,3 :V~~l.l)" 1 < I< t-1;

V

[2,41 (1.,4) V(i+1,2) 1 < I< t-N N- 3

v (i2):~i.3)p 1 < i < t;.

v32 (i,4) V(i+1,1)-' 1 < < t-1. -

v 1. 1 :V~.,2) 2 <± t-2.

E3 V(i, 2):V(i1 ,1 1)P 1 < i t-1;
[3,3V(i,3) V(1+1,2)-' 1 1 ~t-1; ~

v (i3):~i~ll 1 1 < t-1.

Table 1. Small f-uetworke



28

Strategy f-network for N-sorter, N =td A gd]N

v(l,3) V(1,l)'

v(3,l): (3,2)'

v(t-2,-3) V(t-2,4);

[,]V (.l:v(,) 2N-lr2, N=12

v(1.-3) (i+2,1)-' 2 < i < t-3; 2N-11.9 1'>2

(±v )(+,) 2 <i < t-3;

v (i2):Vi+.II~l 1 < i < t-2;

v (i4):~i~,,3 2 <1 < t-1;

v 2 < i < t-1;

v <1 ± < t1l.

v(i±,2) V(i+2,1)', 1 i < t-2;N-

1'(,< (±1,) 1 < t-1.

Table 1. (Cont) Small f-networks.

7,,~

1~ '.~ *t4
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Strategy f-network for N-sorter, N = td [gd

v(l13):V(4,1I)'

v(1,2) :V(i+2,1)' 2 < i t-3;

V (i,3)' (i+2,2)', 2 <1 < t-3;

[4,3) (i,3) V(i+2,1)' 1 < 1. < t-2; 2N-'12, N=12;

v(2,1):V(2,2);

v (i,):V~i2,I 1 1 < t-2;

r,3(i,4) V(1÷1,3)' 12N -1 1

v(i,3) V(±i1,i)' I < i t-1;

V '
(i,4)' (1÷1,2)' 1 < ' t-1;

v (i,):V~,3)' 2 < i < t-1;

v (,) *V~i1 1 1<i<t1

Table 1. (cont) small f-networks.

L
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Except for the [3,4] and [4,3] f-networks, each of the tabulated

f-networks is completely described by a sequence of templates of the form

V(i,(X) :V(i,+y,) -- where 1 < a, d y > O, and CI < yd'. --

followed by a range for i., which is specified in terms of t : N/d. The

[3,4] and [4,3] f-networks are described by several specific comparators,

in addition to templates. Note that when N = 12, half of these specific

comparators are redundant and may be eliminated. For example, the second

comparator listed for the [3,4] f-network, namely V(t_ 2 , 4 ):V(t,l), be-

comes V( 1 , 4 ):V( 3 ,l) which is the same as the first comparator listed.

Let f[g d](N) represent the minimum number of comparators required

by a [g,d] f-network for N items. (Note that this function is only de-

fined when N is a multiple of d.) Since we have not proved that the

tabulated f-networks are minimal, we have labeled the number of compar-

A
ators that they require f [g,d(N). For each of the tabulated f-networks,

except the [3,4] and [4,3] f-networks, we find that

A (8
f[g,d](N) = a[gd]N - b[g,d], (18)

where a[gd) is (1/d) times the number of templates and bgd] s

constant. The tabulated [3.,4] and [4,3] f-networks are also described by

(18) for N > 12.

For large g,d it becomes increasingly difficult to derive an eco-

nomical [g,d] f-network, since the number of patterns of O's and l's

allowed by (11) increases rapidly. Let P(g,d) represent the number of

patterns of O's and l's consistent with (11), that is, the number of

different combinations of values that ii(*,)' n(*, 2 n( *,d-1) can
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assume for each value of n Witn (.,j) abbreviated by nj,

we observe that

P(gd) = ... 1. (19)
nd:nI<nd+g n d fln2<nI n d !nd-_ d-2

We may obtain a recurrerce relation for P(gd) ,y noting that

P(gd)= E ... 1
ndnl5nd4g- 1 ndn2n1 nd nd- ln d-2

+ E... E1

nd•;n2ýnn+z ndn !5nd
d 2db d d-l d-2

: P(g-ld) + P(gd-1). (20)

The solution to (20), with the boundary conditions P(l,d) = d, P(gl) 1,

is simply

P(g,d) = (g+d-i (21)

Note that (21) yields P(2,2) = 3 and P(3,3) = 10, which agrees with

our analysis of the [2,2] and [3,3) merge networks.

When N > gd, the problem of designing an f-network that will order

P(g,d) patterns of O's and l's represents a considerable reduction of

the original problem of designing an N-sorter network that will order N

different input patterns. However, for large gd, we find that P(gyd)

S; .;b .- %

- [ - ,
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becomes too large to permit an exhaustive test of a proposed design for

a [gd] f-network. Therefore, for large g,d we must build f-networks

in such a way that we can prove "by construction" that they complete the

ordering of V. Suitable procedures for constructing large [g,d]

.- networks are given ý.n the next section.

!/
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V. Constructing Large [g,d] f-networks

Our approach to the problem of deriving large sorting networks and

large [g,d] merge networks is to build them out of smaller sorting net-

works and smaller merge networks. We use the same approach to the

problem of designing large [gd] f-networks. We will present two

construction metiods in the form of thecrems. Theorem 2 below describes

a procedure for constructing a [g,sd] f-network using d smell [gs]

f-networks and one [g,d] f-network. Theorem 3 describes a similar

procedure for building an [sgd] f-network out of s small [gd] and

one [sjd] f-networks. We may use these constructions and the f-netwerks

given in Table 1 to achieve f-networks for arbitrarily large g~d.

Before giving the theorems, we will descr'he an example. Suppose

we desire to construct a [3,6] f-network for the [3,6] 18-sorter net-

work. The partial ordering in the intermediate multiset V is depicted

in Fig. 12(a). In Fig. 12(b) we have isolated the partial ordering in

the even members of V. Clearly a [3,3] f-network will order Ve;

similarly, another [1,31 f-network will order Vo.

The partial ordering depicted in 12(a) guarantees (by Theorem 1)

that

n(.,6) - n(*,,) . n(*,l) n(*,6) + 3. (22)

The number of O's in V and V are given by
o e

no n(,) + n(., 3 ) + n(., 5 ); (23)

n n +n +ne n(*, 2) n(*,24) n(*,6)'

IL
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(a) V for E3,6] 18-sorter.

(b) Partial ordering in Ve.

Fig. 12.

I;
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so that

o < (n(.,.)- n(*,6)) + (n(*,3) - n(.,4)) + (n(.,1) - n(*,2))

=no n < n -(*6 < 3. (24)
no e - n(*,l) n (*,6) -~3 (l.

Therefore, a [3,2] f-network will complete the ordering of V, once Ve

and V have each been ordered.
0

Since the two small [3,3] and one full-sized [3,21 f-network will

complete the ordering of V, they together constitute a [3,63 f-network.

The resulting [3,63 18-sorter network is given in Fig. 13.

For Theorems 2 and 3 below it is convenient to consider the multiset

V = 2) , N = pqr, to be a p X q X r array, where

V(i,j,k) = v(i-l)qr+(j.l)r+k, (25)

Submultisets of V include the pq "rows," pr "columns, .and qr

"verticals" defined, respectively. by

V(ij,*) 1 < k < r ,k)

V(i,*,k) = V < i < pp < k < r; (26)

V(1 V ) 1 < J < q, 1 < k < r.V(*,J,k) < i < i p (i,j~k)' ..

Larger submultisets of V include the p q X r "planes", the q p x r planes,

and the r p x q planes defined by

* I - ~-

/ - .
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S*-P kv(ijk) 1 < k < r;

-- t ' jV(ij,k)}, 1 < j < q; (27)v(.,,.) 1<i_<p 1< _<- -

V(i,*,*) = V(i,j,k)
<_ J <q 1< k_< r

For example, if we consider the intermediate multiset V for the [3,6]

18-sorter (Fig. 12) to be a 3 X 3 x 2 array, then

v (1,2,1) ' 3;

V(*,2,1) [v3 ,v 9 , vl); (28)

0

We are now ready for Theorems 2 and 3.

Theoz'em 2:

Let the multiset V = [vlv 2 ,...,v:j, where N ted, be considered

a t x a x d array. Then the following small f-notworks together

constitute a [g,sd] f-network for V.

i) d [g,s] f-networks for V(**k), 1 < k < d; followed by

ii) one [g,d) f-network for V.

i
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Proof:

According to Definition 1, the sequence of comparators represenced

by i) and ii) is a [g,sd] f-network for V if and only. if it will

complete the -3rdering of V given that: a) the planes V jk)'

1 < j < s, I < k < d, are ordered; and b) n j,k., satisfies

n* n(*,d-) n *(*,s, 1) d n(*,s-l,d) <

n(*,s-l,d-l) n . ' (*,i,i) n (*,s,d) + g. (•)

Let us assume that the partial ordering Ai V satisfies con-

ditions a) and b). Then since the submultisets V(.xjk) of V

are ordered and since n(*,jjk) satisfies (29) a Lg,s] f-network will

order V(*,k). Now the number -F "'s in V (* ,k) kboth before

and after the application of the [g,s] f-network) ib given by

n(*'*'k) i E n <*,j,k)

For any two indices kik s~ltisfying 1. < <, kl * d, we may use
2 -:

(29) to show that

-- I < j < s (* J'kI n 'Jk2A *• k"((,- I j) " n,2 n,..,,,

S n(., 1 , 1 ) - n(.,Sd) K g '3l)

Therefore, once the [g,sl f-networks have ordered th- planes V,

(31) guarantees that a [g,d] f-network will complete the orderirg c.f V.

I.
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We have seen that if the partial ordering in V satisfies con-

ditions a) and b), then the d [gs] f-networks in i) followed

by the [gd] f-network in ii) will complete the ordering of V.

Therefore, i) and ii) together constitute a [g,sd] f-network.

Q.E.D.

Theorem 3:

Let V be as in Theorem 2. Then the following small f-networks

together constitute an [sg,d] f-network for V.

i) s [g,d] f-networks for v(*,jl*), 1 < j < s: followed by

ii) one £s,d] f-network for V.

Proof:

The proof of Theorem 3 is similar to that for Theorem 2 and is

given in Appendix A.

The partial ordering in the intermediate multiset V for the [3.2,3]

18-sorter is given in Fig. 14. The construction method described by

Theorem 3 requires a [3,31 f-network connecting the three odd rows

of V IV(,,)) and a [3,31 f-network for the even rows (V(.2.)

followed by a [2,3J f-network. The resulting [6,3] lb-sorter network

is given in Fig. 15.

We many count the comparators required by the f-networks constructed

according to Theorems 2 and 3 to obtain the following important corollary.

._-ow
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Corollary 2:

f[g,osd] (N) < d.f [g,s] (N/d) + f[gd](N); (32)

f[sgd] (N) s.f [g,d](N/I) + f s,d](N). (33)

The inequality is required in Corollary 2 since we have no guarantee

that an f-network constructed using Theorem 2 or Theorem 3 is minimal.

In fact, 1:.v 13,6] f-network exhibited by the 18-sorter in Fig. 13

is not the most economical [3,61 f-network known. We may use Theorem 2

with s = 2, d = 3, to build a L3,6] f-network out of three [3,2] and

one [3,31 f-networks. Using Table 1 we see that this f-network requires

A A
f[ 3 ,6 (N) = 3 f' 3 , (N/3) + 3 , 3j(N).= N - (34)

comparators, whereas the f-network in Fig. 13 requires - N - 13 =29
3

comparators. (However, a slight modification of the [6,3) f-network

illustrated in Fig. 13 reduces the number of comparators to - N - 1•.)
3

The number of comparators required by the best f-network that can

be constructed out of smaller f-networks using the construction of

Theorem 2 and/or Theorem 3 is neatly summarized by

A
f[g,d](N) min min mF(grdNjq~p)j, (35l <q<g l <p<d

g mod q = 0 2< q + p
j mod p - 0

where

A A
F(g,dN,q,p) = qp'f [/q,d/p] (N/(q.p)) + f [qp](N)

A A
+ q'f[g/q,p](N/q) + p-f[q, d/p](NIP) . (36)

/
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A A
Note that f [g)](N) = f[11d](N) = 0, so that: a) if q = 1, then (36)

describes a construction that uses only Theorem 2; b) if p = 1 then

(36) describes the use of Theorem 3 alone; and c) if p,q > 1, then (36)

describes a network built using both theorems. The case p = q = 1

is not allowed, since it would reduce (35) to an identity.

We may use the construction methods of Theorems 2 and 3, along

with the f-networks in Table 1, to achieve [g,d] f-networks for all

gd of the form 2 3 . When g and/or d have prime factors greater

than 3., we may construct a [gd] f-network as follows: Using Batcher's

general method we obtain a [2,d] (2d)-sorter network. This (2d)-sorter

will, of course, exhibit all of the templates required by any L2,d]

network. We may use the [2,dj f-network and Theorem 3 to derive a

i i
[21,d! f-network, where g < 2 . From Definition 1 it is clear that a

[2',d] f-network is also a [g,d] f-network for all values of g < 21.

(This is because the unsorted patterns remaining in the intermediate

set V for the [g,d] sorter are a subset of those remaining in the

[2i,d] network, if g < 2'.) Therefore, we may sonstruct [g,d] f-networks

for arbitrary g,d.

We will conclude this section by calculating the number of compara-

tors required by the [gi dJ] f-network constructed using Theorems 2

and 3. From Equation (35) we obtain

• Note that these construction techniques are illustrated by networks

in Table 1: the [2,4) f-network illustrates Theorem 2, while the

[4,2] f-network illustrates Theorem 3.

/ .



Ar
fg"j Omin 10<smin F(g,dpN, r ds, (37)

0<r + s

S
Since f(g,d](N) is linear in N for all of the tabulated f-networks,

we expect a solution to (37) of the form

A
f i j (N)= a i N-b (38)[gi ,d~ ] (N)d] b~j

Us•...g (36) and (38) in (37) we obtain

a m min min a + a
[g~d 0 <r<i1 0 < <~ J [g A]p

0 < r + ss]

+ a + a [ d (39)
igC-r d [ gr d-S

b id]= max max grdsbr - JS

[g ,d 0 < r < i 0 < s < J ( g r j 9] grs]
O<r+s

+ grb + b

+ rb[g i'r,) d ab [gr , d J-8S1] (0

Equations (38)-(40) describe the number of comparators required

by a [g id J] f-network built out o•' smaller t-networks using Theorem 2

and/or Theorem 3. Most of the best [gi,di] f-networks known exhibit

this construction ak. are, therefore, described by (38)-(40).

/
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For many values of gd, all of the best [gr, ds] f-networks known

(0 < r < i ) 0 < s < J) 0 < r + s) are constructed from the [gjd]

f-network by repeated use of Theorems 2 and 3. In this case the solutions

to (39) and (40) are

a = i.J.a ; (41)[g±,dJ) [g,d)

b - (gi- )(di-I) b (42)

[gidi) (g-l)(d-l) [g,d]

From Table 1 we observe that a [4,41 2) b[4,4] = 11, whereas from

Equations (41) and (42) (evaluated with g = d = i = j = 2) we find that

the [4,4] f-network constructed from the [2,2] f-network according to

Theorems 2 and 3 requires a = 4a[2,23 = 2, b[41 = 9b[2,2] = 9.

The [4,4] f-network given in Table 1 is the smallest example of a

special procedure which has been discovered for constructing [2',2 k

f-networks [ 7 ]. The special procedure is too complicated to include

in this paper. Basically, it requires; a) determining the templates

required by the [2 k,2 k f-network derived using Theorems 2 and 3; and

b) reordering these templates in such a manner that, although the result-

ing network still orders V, some of the comparators have bscome

"redundant" and may be removed. Since the s-4cial construction does not

reduce the number of templates, a k k Is given by (41), evaluated with[2 ,2 2k

g = d 2 and i j k. However, the constant term is increased to

b 2 4k + (43)
[2k 2k 1  3 -

[2,2 3

It.
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which represents a reduction (since b[g d] in (38) io preceded by a

minus eign) of - 4 comparators. When g d = 2 and 1 - J, the

best [2 2 j ] f-networks known use the special [2 k2 k] f-networks as

building blocks for the construction methods described by Theorems 2

and 3. The coefficient b[ 2 12j] is obtained from (40).

U
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VI. The EconoE.y of [gd] -a-sorter Networks

We have defined a [g,d] N-sorter network to consist of - sorting

networks of size N1 ,N 2 ... ,NgI where Ni is an integral multiple of

d and 1g9 Ni - N, followed by a [g~d] (N1,N2,...,Ng) merge network.

Since Ni is required to be a multiple of d, we cannot construct a

[g,d] N-sorter network unless N is a multiple of d. This limitation,

which was included since it greatly simplifies the description of [g,d]

merge networks and [g,d] f-networks, can be removed. In [ 3 , 5 3 a

procedure is given for pruning an N-sorter network, that is eliminating

one input lead, one output lead, and several comparators, to achieve an

(N-l)-sorter network. For arbitrary N we can use the [g,d] strategy

to achieve an N-sorter network by 1) deriving the [g,d] (dFN/dl)-

sorter network and 2) pruning as necessary. If we extend the defi-

nition of a Cgd] N-sorter network to include the sorting networks

achieved by pruning a [g,d] sorting network, then for all values of N

i.cept N = 10,13,14,15,16, or 18, the most economical N-sorter known

is a [g,d] sorting network.

We can also use pruning to achieve a [g,d3 (NN 2, ... ,Ng) merge

network when not all of the Ni are integral multiples of d. Let

M[gd](NIN 2 ,... 9Ng) represent the number of comparators contained in

the (NIN 2 ,...$Ng) merge network achieved by pruning (if necessary) the

[g,d] (dFN 1/dldrN/dl,...,dfN /dl) merge network. Thel, the minimum

number of comparators required by a (N1 ,N 2 ,...,Ng ) merge network con-

structed using any [g,d] strategy is given by

M (N1 ,N2 ',...Ng) = mdn hg,d](Nl'N 2 ""Ng)" 1144)
g d
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It is instructive to ask which values of g and d yield the most

economical N-sorter networks. Let S (N) represent the number of com-

parators required by the most economical N-sorter that uses g sorting

networks followed by a [gd] merge network. In order to permit a valid

comparison of networks achieved with different values of g, we will

require that each of the g initial sorting networks must itself use

the g-way divide-sort-merge strategy, so that S (N) satisfies theg

recurrence relation

S (N) = mn [ M (N,...,N ) + z Sg(Ni)]. (45)
g N+...+ N g 1 < i < g

Ni_> 1

We have calculated S (N) for g = 2,3, and 4 and N < 36; the
g Aresults are given in Table 2. The last column, labeled S(N), gives

the number of comparators contained in t4.e most economical N-sorter known

A
of any construction. An asterisk indicates those values of S(N) which

represent an improvement over the most economical networks previously

reported r 5 ]-

From Table 2 we observe that S 3(N) is only occasionally smaller

than Batcher'e result, B(N) = S2 (N). However, S4 (N) < S2 (N) for all

N > 8, and the [4,d] N-sorter networks are more economical than any

previous N-sorter, for N > 34.

* The improved 18-sorter, which does not use a (g,d] strategy, Is given
in Fig. 16. The improved 26-,27-,28-, and 34-sorters all use two
initial sort units, one of them the particularly efficient 1e-sorter
designed by M. W. Green, followed by Batcher's (2,2] marge network.
The best 35-sorter is achieved by pruning one lead from the (4,91
36-sorter; the Oest 36-sorter uhbs the [3,12) strategy.

Il
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A
N g 2 g=4 8 (N)

2 1 1 1 1

3 3 3 3 3

4 5 6 5 5

5 9 9 9 9

6 12 12 12 12

7 16 17 16 16

8 19 21 19 19

9 26 25 25 25

10 31 32 30 29

11 37 37 35 35

12 41 42 39 39

13 48 51 47 46

14 53 57 52 51

15 59 62 57 56

16 63 70 61 60

17 74 76 73 73

18 82 81 80 79*

Table 2. 89(N) for g 4, N <36.

.
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N g-2 A

19 91 93 89 88

20 97 101 95 93
21 107 108 104 103

22 114 117 110 110

23 122 12-5 118 118

24 i1ý7 131 123 123

25 138 141 135 134

26 146 148 11+3 141*

27 155 154 1>1 150*
28 161 168 157 156*

29 171 178 168 166
30 178 187 174 172
31 186 197 182 180

32 191 201 187 185

33 207 214 203 203

34 219 226 214 213*

35 23234 225 225*

36 241 241 233 232*

Table 2 (cont.)

A¶

This value of S(N) describes an N-sorter network that Is more
economical than any N-sorter previously reported [ 5 ).

MOR

- -X~ ~. J4
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We may discover the asymptotic growth of S (N) by considering the

k+l
case N = g . For all values of g tried we have found that the

minimum in the right-hand-side of (45) occurs when N, = N = = g k
1 2J

so that

S (gkg +l g S g k) + M (gk gk k... ,gk) (46)

kk

We have also found that the most economical [g,d]"(gkg ,...g )" merge

network known is achieved using d = g, so that

Mg(gk, gk) •gg(gk, gk
H 9(k ... Yg -- M[$3gk....q k

k-1 - A .k+l

g Mg(g +,...,gkl A (gg] ) (47)

The solutions to the recurrcnco relations givcn ' (47) and (46),
/\

with the boundary condition Sg) = Mg(lsl,...,1) - S(N), are

k k) g k+l (-lg

M (g k,...,g k (2a 9k + ag + p ) g + (g-l)yg; (48)

k (2 k

Sg(gk) (ak 2 + (ak + Yg) gk - ,(49)

where

'9 -lg, ], 
(50)

-g 5(g) - [gg] g (g-l) bigg)D

Bg = g -"
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Yg= (or bgg] (52)

The asymptotic growth of S (N) may be obtained from (49); it isg

given by

2S (N) = Ci N(log N) + 5 N(log NN" + y N + 0(1)gg gg ygN

= a (log2g)-2 N(log2N)2 +

8g(log2 g)-i N(log2 N) + ygN + 0(1). (53)

We may obtain the coefficients a[gg] and b[g~g] from Table 1 and use

them in Equations (49)-(53) to show that

S(N) = 1 N(log2 N) 2 N(log2 N) + N + 0(l);S2(N 17 l2 " 2

s 3 (N) = .265 N(log2 N) 2  
- .315 (log12N) + 1.25N1 + 0(1); (54)

2 1 1
s(N) = 1N( N) N(log N) + •- N + 0(1).

Since the leading coefficient for S3 (N) exceeds that for both S (N)

and S4 (N), it is not surprising that 83((N) in generally larger than

the other two. Also, although the leading coefficient is j for both

S2(N) and S4 (N), the coefficient for the term N(logN2) is smaller

for S,(N). This explain' why 34 (N) is smaller than 8 (N) for
4 4 2

sufficiently large N, that is, for N

f
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From (50) and (53) we observe that the coefficient for the term

N(log2N)2 in the expansion of S (N) is

9 (log2 g)-2 = ½(log2 g)-2 a~g,g]. (55)

When g = 2 r, we may use (41) to show that (55) reduces to .. Howeier,
)2

for all [g,.g] f-networks known, algal > Ylog2 g) if g is not a

power of 2. Therefore, the leading coefficient in the expansion of S (N)
g

is minimized - - and its value is *-- - if and only if g is a power of 2.

In view of the above observations we conclude that the most economical

N-sorter networks are achieved when g is a power of 2. Furthermore, we

might hope to achieve successive reductions in the asymptotic growth of

S (N) by choosing g = 2 r (which maintains a leading coefficient of *),g

for successively larger r. Therefore, we use (50)-(53), along with

a b a[. and b[6 given by (41) and (43), and

A A
with S(8) = 19 and S(16) = 60 obtained from Table 2, to derive

1 2 12
S8(N) i- N(log2N) - N(log2 N) + N 0(l).

(56)

Sl6 (N) 1 N(log2N)2  _N(logN) + JN + 0(1).1 2 ~ogs 39, 2 (

Comparing these results with (54) we observe that for sufficiently large

N, S8 (N) > S4(N) > 81 6 (N). And, trying g £ 2r for succeseively larger

va.ues of r, we find that 4uccessive improvements occur only when r is

itself a power of 2, so that the first improvement over 8 16 (N) occurs

when r 23 8, or g 2 256.

M.1-f~



The most economical (2 2r)-sorter network known, when r = 2 > 4,
r r A 2r 22

uses the [2,2 strategy, so that S(2 ) = S (2r). (See [ 7 J.)

We may use this observation to eliminate S(2 ) from the right-hand-

side of (51), evaluated with g = 2 , thereby obtaining

2r = 2-2r S r(2 2r) - 2r 2r
2 2 [2 , 22

- 2 "2r(2 2r- 1)- b [22r 22r]. (57)

Using (41), (49), (50), (52), and some algebra we can reduce (57) to the

following recurrence relation for the coefficient r"

2r2

S2 2r = 2p r + (1 - 2-2r ) ( 2 r- _) b 2r,

- (2 2r -1) bh2  2r 2 2r (58)

The solution to (58), with b k k given by (43) and with the boundary
[2 ,2 ]

condition p16 = 71/48 obtained from (51), is

r = - ( + a.) r, (9)
2

when r 2 and

a s 1 2 (2' (60)
0 < < < <

0-



From (43) and (52' we obtain

= (2r - 1)-2 (- 4r - 3 2r + (61)2 r3

Since a rapidly converges to .107 and since y m (4r - 2

A
we may 4chieve a growth rate for S(N) of

s(N) = .2�g - .372 N(log2 N) + 1.333 N + 0(l). (62)

Equation (62) represents an improvement of order N(log2N) over B(N)

S (N), which exhibits the smallest growth rate knrvn previously. Further-
2

the coeffld.-ent of N(log2 N) in (56) is -. 370.

_ _ _ __ _ I_ _ _"
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VII. Conclusion

The strategy used by most of the best previous N-sorter networks

is to divide the N inputs into 2 groups, sort these groups separately,

and then merge the results. The best merge networks, suggested by

K. E. Batcher L 4 3,, partition each sorted multiset into 2 divisions, merge

each divisior of the first so*,*ted multiset with one of the second, and

then use JN-1 comparators to resolve the remaining ambiguities.

Our results demonstrate that greater economy can be achieved iv

N-sorter networks by dividing the N inputs into g > 2 groups that

are sorted separately, and by partitioning each sorted mul-,set into d > 2

divisions to be combined by d merge networks. In particular, we have

shown that by using g = d = 4, we can achieve N-sorter networks that

are more economical than Botcher's for N > 8 and that are more economi-

cal than any networks previously designed for N > 34. We have indicated

that even greater savings can be achieved by using g = d = 2 r, where

r = 2s > 4; however, these constructions are only applicable for

N > g.d =4

Our N-sorter networks require order N(log 2N) fewer comparators

than the best previous networks, However, we have not been able to im-

prove upon the asymptotic growth rate of *N(log2N)' achieved with

Batcher's construction. As noted above, the coefficio9nt for the term

N(log2N) with our construction is giveh by

ag (lot~X C jlog g)_ a[,,,], (63)

Since a is (11g) times the number of templates required by the

S. ..g -- m
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[g,g] f-network, we could reduce the coefficieut of the term N(log2 N)2

by constructing an improved [gg] f-network that zequired fewer than

'(1og 2g)2 templates. However, in Appendix B we show that

fCg,al](N) _> (1 - d-1) N - (d - 1), (64)

so that a[gpg] > 0 and a 9 > 0. Therefore, the [gd] strategy -mst

require order N(logzN) 2 comparators.



Appendix A: Proof of Theorem 3

The proof of Theorem 3 is facilitated by the following tvo lemmas.

Lemma 1:

the rs V( ) of an r x d array V are ordered, then the

columns V(*,) are also ordered if and only if

n(r,.) n (r-l,*) n(1,*) (65)

Proof: Lemma 1 follows from Theorem 1 by symmetry.

Leoma 2:

Suppose that the t x s planes V( *k) of the t x s x d array

V are ordered. Then if we sort the t d planes V(*o,*), the t x s

planes remain ordered.

Proof:

Assume that V(*,*,k) is ordered, 1 < k < d. Then the columns

V (.,)k) 1< i < t, and the verticals V(*,jk)' 1 < j 5 a, are also

ordered, since they are all submultinets of V(*,k). Therefore, by

Theorem 1,

n~ sk) < n, k (: . n< n(,l,k) (66)

Suting ('66) for 1 < k < d we find that

n(.,.*. n ('6"7 n*1,)
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Now suppose we sort the t x d planes V~* 1 < j < s. We

need to show that this operation leaves the plane&e V ,)ordered.

Clearly 6orting V (*j,i*) does no' alter the number of 0's in V(P,)

therefore, n (*,i,*) satisfies (67) after the t X d planes are sorted.

Also), once V(** is sorted, the n(** 0's are divided among the

rows V according to

0 if n( ~~ E EO,(i-l)d);

d if "(4* E [id,td);

Equations (67) and (68) together imply that

< *<-n (69)

.1 -,* 
,,

We can consider V to be a ts x d array with ts "rows"

l< i <t, i< j<sa, and with d "columns" V (*)*,k)p l k <d.

Sorting V(*,j,.*) orders the 'rows" because they are all sub-

multetsof (*,*). If (*,,k)is initially ordered.. then sorting

Vm , i t e " e s V ( ,J ,* ) are
(,,)leads to (69). Now by Lema1 fte"os

ordered and n(~j* satisfies (69)j, then the "columns" V(*.,*,k ) are

also ordered. Therefore, If V *k) is initially ordered, then sorting

V leaves V ordered.
(~Q.Zk)



We are now ready to prove Theorem 3,.

Theorem 3:

Let the multiset V = £V.vl 2,9...FvN],. where N =tsd, be considered

a t X s X d array. Then the following small f-networks together

constitute an Cog,d) f-network for v.

1.) a -g~d3 f-networks for V(*,J,*), I < j < a; followed by

ii) one [s,d) f-network for V.

Proof:

According to Definition 1, t~ie sequence of comparators represented

by i) and ii) is atn Csg,d) f-.network for V it and only if it

will compl1ete the ordering of V given that: a) the d planes

V *k~p1 < k < d., are ordered; and b) n (*.,k ) satisfies

(*,*,d) 5 n(*,*,d_.1) S -(*,*,l) -5'**d)+0.0

Let us assume that the partial ordering in V satisfies con-

ditions a) and b). Then, sincei V(*A) is ordered, each of the

submultisets V 1*jk~ < .j < s, is also ordered. In addition, the dis-

tribution of the n (, Ok)Os among the verticals V,*Jk satisfies

-*jk j[(n(*,*,k) + J ) / j.(71)

We may use (70) and (71) tO show that

n (*, 3 ,d) '(nQ,J,d-.h) <..<n~ l '(,J + g.(72)

- - *Yl
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Since the d submultisots V (Ik) 1 k < d, of V aeodrd

and since n (*,Jlk) satisfies (72), a [g.,d) 1-network will or'der

Lemma 2 implies that the [g,d] f-networks that order the t x d

planes Vleave the t x a planes V ordered. Furthermore,(*,*,k)

once V is ordered, the distribution of the n O's among
(*,j,*)(* .

the verticals V k)satisfies

n(~k = [n(j,)+ d -k) /dJ (73)

Equation (73) imiplies that

Summing (74) for 1 < j < s we obtain

Therefore, since the (g,,d) -networks for V(** leave the planes

V(*,*,k) ordered, (75) guarantees that an Es,,di f-network will complete

the ordering of V.

We hare **on that It tne partial ordering in V satisfies ron-

ditions a) and b), then the s [g,d) f-networks in 1) followed

by the Es,,d) i-network in ii) will complete the ordering of V.

Therefore, 1) and i11) together constitute an reg,odj z-aework.

1WK

Q.LD.ý,
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Appendix B: A Lower Bound for f[g,d](N)

In this appendix we calculate a lower bound for fgd•(N), the

number of comparators required by the most efficient [g,d] f-network

for the set V = fvl)V2 )...IVN) , where N = td, t-" g > 2. Let r

and s be any two integers satisfying 1 , r < t-1, 2• s < d. Then,

by definition, a [g.d] f-network will complete the ordering of V if

the columns V'(j), 1 < j < dP, are ordered and if

n •) r+l;

n,1) r, 2 < j _ s-i; (76)

nr-l, s< j _ d.

From (76) we see that V is ordered except that the 0 at position

V(r+l,l ) should be moved to V r~s). Since a [g~dj f-network will

complete the ordering of V, it must include a comparator or a sequence

of comparators that provide a path from V(r+l 1 l) to V(rs)*

Fow a comparator can only move a 0 in one position of V to a

position labeled by a smaller index. Thertvfore, a [g,d] f-network must

contain either the comparator V(rs) :V(r+l1l) or else the comparator

V (r,s):V(r,j)' where s < j < d and where the f-network includes a path

from V(r+ll) to V(rj). Since r and s are arbitrary integers

satisfying 1 < r < t-11 2 < s < d, we have shown that

f rg d3 (td) > (t-l)(d-l',, gtd > ?, (77t

S,.• •.:• •.. ..............~~7--ft
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or, using N =td,

f [g~d(N) (1 ( d- )N -(d 1), g.4d <2. (~78)

For g > 2 and/or d > 2 (78) does not provide a very tight bound

for f [gd](N); indeed, it is not at all the greatest lower bound known.

However, (78) is sufficient to show that a[,,,] > 0 and a > 0, so

that th' number of comparators required by a [g,d) N-sorter network grows

as N(log 2N).
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